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NOTE

Chaotic Algorithms: A Numerical Exploration of the Dynamics of a
Stiff Photoconductor Model

The photoconducting property of semiconductors leads, for which the separation of time scales is considerable,
the results begin to differ drastically. Even though bothin general, to a very complex kinetics for the charge carriers

due to the non-equilibrium processes involved. In a semi- integration schemes lead almost always to the same asymp-
totic state for system (1), the main difference was foundconductor with one type of trap, the dynamics of the photo-

conducting process are described by a set of ordinary cou- at the transient response with the results depending very
sensitively on the size of the RK integration step.pled non-linear differential equations given by [1]

Figure 2 shows the results of (1) according to the
4-RK integration scheme, where it is possible to see thedn

dt
5 G 2 na1(Nt 2 m) 1 c1m 2 c1n underlying irregular transient, with ‘‘turbulent’’ or chaotic

regions alternating with ‘‘laminar’’ or periodic ones. This
intermittent behavior is followed by a reverse period dou-dm

dt
5 na1(Nt 2 m) 2 d0mp 2 c1m (1)

bling process through which the system finally reaches an
equilibrium or steady state. On the contrary, for the same
set of parameters, integration with the Gear scheme yieldsdp

dt
5 G 2 d0mp 2 c2p,

a very regular behavior similar to that of Fig. 1.
The amazing behavior of Fig. 2 could be explained by

taking into account the unavoidable discretization in timewhere n and p are the free electron and hole densities,
and m the trapped electron density at time t. A physical of (1) by the numerical method. In the RK method the

iteration array sets explicitly the xk11 variable as a non-description and values for the seven parameters are given
in Refs. [1, 2], respectively. linear function of xk [3]. Now, the chaotic transient with

its period-doubling bifurcation of Fig. 2 closely resemblesSo far, there is no known closed form solution for the
set of non-linear differential equations (1), and therefore, other period-doubling processes, as for instance, the well-

known logistic map [4], xk11 5 exk(1 2 xk).numerical integration techniques have to be employed, as,
for example, the standard procedure of the Runge–Kutta Before looking for the common features between the

standard discretization of the RK scheme and the logistic(RK) method. Now then, each one of the mechanisms
of generation, recombination, and trapping has its own map, let us quickly set the differences. First, the chaotic

map produced by the logistic map is not in time, as in Fig.lifetime, which means that different time constants are
to be expected in the time dependent behavior of the 2. It is a plot of the steady state of xk versus the parameter

e. Second, the onset of chaos exhibited by the logisticphotocurrent. Thus, depending on the parameters of the
model, the system (1) may become stiff if the time scales equation is reached through period-doubling bifurcations

[4], while the present system (1) suppresses chaos throughbetween n, m, and p separate considerably. This situation
may impose a considerable stress upon a fixed step numeri- reverse period-doubling bifurcations.

Now, since the chaotic transient occurs in the time do-cal algorithm as the RK, which may produce then unrelia-
ble results, and other methods have to be considered. main, apparently the time should have to appear explicitly

into Eqs. (1), which is not the case for the autonomousTherefore, the purpose of this note is to examine, for a
critical range of parameters, the results of the numerical dynamical system (1). If instead the numerical algorithm

itself is examined, some similarities between the logisticintegration of the stiff system (1) obtained by standard
numerical schemes, such as the single-step fourth-order map and the RK method may become apparent. But the

time t does not appear explicitly in the RK discretizedRunge–Kutta method and the multistep Gear method [3],
the latter being appropriate for a rigid system of equations. version either, and it should be expressed as the iteration

factor n times the integration step, h 5 tk11 2 tk , that is,It was found that, in general, both integrators lead to
the same solution, see Fig. 1, but for certain parameters, a factor nh multiplying the non-linear term for xk in order
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yk11 5 yk(1 1 lhyk 1 (lh)2y2
k 1 (1/4)(lh)3y3

k). (4)

For lh , 1, Eq. (4) tends to Eq. (3). Also, for l , 0
and after simple linear transformations, it is clear that (3)
is equivalent to the logistic map in terms of the parameter
lh; yet time, as in (nh)l, is not explicit in (3), nor in (4).
Now, yk11 is a non-linear function of yk which in turn can
be expressed as a function of the initial condition y0 when
iterating back to k 5 0. Moreover, it can be shown for a
successive few iterations of Eq. (3) that terms of the form
(1 1 lhy0w)n where w 5 (1 1 lhy0) will appear. This

FIG. 1. Numerical integration of the photoconductor equations for corresponds to an expression of the form (a 1 b)n, with
a1 5 2.5 3 10215 cm23 sec21 and Nt 5 5 3 1014 cm23. The results with a 5 1 1 (lhy0)2 and b 5 lhy0 and, if a2 . b2, which is the
the fourth order Runge–Kutta and the Gear algorithms are identical for

present case, it is possible to expand according toh # 0.01.

(a 1 b)n 5 an 1 (n/1!)an21b 1 (n(n 2 1)/2!)an22b2 1 ...,
(5)

to play the same role in the time domain as the parameter
e of the logistic map in the parameter domain [4]. Never-

where it is clear the presence of terms involving nb,theless, such a factor nh could be found in the iteration of
n(n 2 1)b2, etc., that is, nhly0 , n(n 2 1)(lhy0)2, etc. Inthe RK scheme as follows.
this way, factors of the form nh will emerge through theConsider a simple non-linear differential equation,
iterations of the discrete version of (2), and for extension,
in the non-linear model (1). Interestingly, the application(2)dy/dx 5 ly2.
of an implicit algorithm as, say, backward Euler [3] (which
is the fundamental algorithm for the Gear formulas) toDiscretization of (2) through the forward Euler algorithm
the example (2), does not produce binomial expressions[3] (which is the fundamental algorithm for the RK formu-
as those described in (5); that is, transient chaos is notlas) produces
to be expected since the time factor nh will not appear
explicitly. Therefore, discretization of (1) through explicit

dy/dx 5 ly2 P (yk11 2 yk)/h ⇒ yk11 5 yk(1 1 lhyk), (3) algorithms such as forward Euler or RK should lead to a
non-linear iterative structure resembling that of the logistic

where h is the integration step. Similarly, it can be shown map, with an explicit ‘‘parameter’’ involving the factors
that the second order RK scheme over (2) yields nh; so that, as time progresses, the possibility of observing

chaos in the time series becomes plausible.
As the photoconductor equations involve more non-

linear terms than the simple test equation (2), a much
complex dynamical behavior is to be expected for the re-
sulting discrete version of (1). Therefore, the numerical
outcome will be strongly problem dependent, as found by
some investigators on the dynamics of numerical methods
[5, 6].

In a study by M. Ablowitz et al. [5] it has been demon-
strated that standard discretization through a RK routine
of the cubic non-linear Schrödinger equation may lead to
numerical induced chaos related to the homoclinic struc-
ture associated with the equation. Similarly, in a study by
H. C. Yee et al. [6], spurious steady states were reported
when integrating non-linear differential equations models
with standard explicit solvers. At this point, it is important

FIG. 2. Complete transient of the free electrons obtained with the to stress the similitude of the photoconductor set of equa-
4-RK algorithm for a1 5 4.64 3 10214 cm23 sec21 and h 5 0.01. The lines

tions (1) with the well known Lorenz equations, for whichjoining the successive points generated by the numerical integration were
its homoclinic structure [4] has been extensively studied.removed to reveal the underlying intermittent chaotic behavior and the

breakdown through reversal bifurcations to the steady state. Considering that the Lorenz equations are comparatively



NOTE 411

de Desarrollo Cientifico de la Universidad de los Andes under Projectsimpler than the set (1), it is clearly to be expected that
C-621-93A.a more complex underlying homoclinic structure for the

photoconductor exists, yet remains to be studied, and thus,
with consequences in the unstable behavior regarding stan-
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